On the Calderón problem for nonlocal Schrödinger equations with homogeneous, directionally antilocal principal symbols

نویسندگان

چکیده

In this article we consider direct and inverse problems for ?-stable, elliptic nonlocal operators whose kernels are possibly only supported on cones which satisfy the structural condition of directional antilocality as introduced by Y. Ishikawa in 80s. We Dirichlet problem these respective “domain dependence operator” several, adapted function spaces. This formulation allows one to avoid natural “gauges” would else have be considered study associated problems. Exploiting complement investigation with infinite data single measurement uniqueness results Here, due antilocality, new geometric conditions arise domains. discuss both setting symmetric a particular class non-symmetric operators, contrast corresponding “one-sided operators” phenomena emerge problems: For instance, it is possible spaces involving local data, unique continuation property may not hold general further restrictions set arise.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Pseudodifferential operators with homogeneous symbols

We prove boundedness of pseudodifferential operators with symbols satisfying the conditions |∂ ξ ∂ xa(x, ξ)| ≤ Cβ,γ |ξ|m−|β|+|γ| on homogeneous Besov-Lipschitz and Triebel-Lizorkin spaces

متن کامل

The Dirichlet problem for some nonlocal diffusion equations

We study the Dirichlet problem for the non-local diffusion equation ut = ∫ {u(x+ z, t)− u(x, t)} dμ(z), where μ is a L function and “u = φ on ∂Ω× (0,∞)” has to be understood in a non-classical sense. We prove existence and uniqueness results of solutions in this setting. Moreover, we prove that our solutions coincide with those obtained through the standard “vanishing viscosity method”, but sho...

متن کامل

Equations with Generalized Symbols

We consider the Cauchy problem for a hyperbolic pseudodifferential operator whose symbol is generalized, resembling a representative of a Colombeau generalized function. Such equations arise, for example, after a reduction-decoupling of second-order model systems of differential equations in seismology. We prove existence of a unique generalized solution under logtype growth conditions on the s...

متن کامل

Integrable nonlocal nonlinear Schrödinger equation.

A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2022

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2022.09.009